新闻资讯

打造电机行业的数字化智能工厂

直流伺服电动机主轴驱动控制系统应用分析


直流电动机可以采用调压、调磁和改变电枢电路电阻的方法调速,但由于改变电枢电路电阻调速得到的机械特性较软,所以在数控机床上很少采用,而采用调压和调磁两种方法相结合的方法,不仅可以获得很宽的调速范围,还能充分利用电动机的容量。在数控机床的主轴驱动中,直流主轴电动机速度控制通常采用晶闸管调速系统和晶体管脉宽调制(PWM)调速系统。

一、调磁调速电路

主轴电动机功率通常较大,且要求恒功率调速范围尽可能大,所以一般采用他励电动机,励磁绕组与电枢绕组相互独立,由单独的可调直流电源供电。

励磁控制电路的电流给定、电压电枢反馈、励磁电流反馈三组信号经比较之后输入PI调节器,调节器的输出经过电压/相位转换器,控制晶闸管触发脉冲的相位,调节励磁绕组的电流大小,实现电动机的恒功率弱磁调速。

二、调压调速电路

调压调速电路类似于直流进给伺服系统,也是由速度外环和电流内环构成的双闭环调速控制系统,具有良好的静态和动态指标,可 大限度地利用电动机的过载能力,使过渡过程 短。其通过控制直流主轴电动机的电枢电压实现变速。

三、主电路及其工作原理

数控机床加工零件时,要求主轴正反转切削功率要尽可能大,停止和改变转向要迅速。主轴直流电动机驱动装置采用三相桥式反并联逻辑无环流可逆调速系统。主电路如图1所示。

每组按三相桥式连接形成变流器桥,两组变流桥为反极性并联,由一个交流电源供电。反极性并联电路能实现电动机正反向的电动和回馈发电制动。为保证在任何时间内只允许一组桥路工作,另一桥路阻断,采用逻辑控制电路。

当电动机正向运动时,VT1管工作在整流状态,提供正向直流电流;电动机反向运动时,VT2管工作在整流状态,并提供反向直流电流,实现电动机在 一、三象限的起动、升降速度控制。

当电动机从正向运动状态要转到反向电动状态时,速度指令从正变负,VT1管进入逆变状态,这时电动机电枢电路中的电感储能维持电流方向不变,电动机仍处于电动状态,但电枢电流已逐渐减小。当电枢电流减小到零后,必须使VT1管和VT2管都处于封锁状态,这时电动机在惯性作用下能自由转动。经过安全延时后,VT2管进入有源逆变状态,电动机工作在回馈发电制动状态,将机械能送回电网,转速迅速下降,当转速下降到零后,VT2管进入整流状态,电动机反向起动,从而完成了从 一象限到第三象限的工作转换。

只要使VT1管和VT2管的控制相反,就实现了电动机从反转到正转的转换过程。

四、主电路控制要求

为保证在任何时间内只允许一组桥路工作,另一组桥路阻断,采用逻辑控制电路。利用逻辑控制电路可检测电枢电路的电流是否达到零值,并判断出旋转方向,提供VT1管和VT2管的允许开通信号,使一组晶闸管在工作时,另一组晶闸管的触发脉冲被封锁,从而切断正反两组晶闸管之间可能出现的电流通路。为此,逻辑电路必须满足以下条件:

(一)每个时刻只准向一组晶闸管提供触发信号。

(二)只有当工作的那一组晶闸管电流为零后,才能撤销触发信号,以防止当晶闸管逆变时,电流没有为零,撤销触发信号造成逆变颠覆而出现故障。

(三)只有当工作的那一组晶闸管完全关断后,才可以向另一组晶闸管提供触发信号,以防止出现大的环流。

(四)任何一组晶闸管导通时,要防止其输出电压与电动机绕组产生的电动势方向一致,导致电流过大。

相关新闻

130伺服电机高效、精准的动力之源


  在工业自动化和精密机械领域,伺服电机以其性能和精确的控制能力,成为不可或缺的核心组件。而130伺服电机,作为其中的佼佼者,以其高效、精准、稳定的特点,赢得了广泛的赞誉和应用。  130伺服电机作为新一代高性能交流伺服驱动器,融入先进的驱动技术,具有如高功率、高精度、低噪音、高速响应、稳定可靠等特点。无论是N型还是M型,这两款型号都能满足不同场合的需求,为各种工业应用提供强有力的支持。  在性能方面,130伺服电机展现出了出色的能力。选用高工作温度、高磁能积的优质永磁材料,确保了电机的高效稳定运行。采用有限元法优化电磁参数设计,使得电机的性能更加卓越。正弦波电流驱动的应用,使得电机的运行特性更加良好,提高其动态性能和稳定性。  在控制精度方面,130伺服电机同样表现出色。采用新一代精密调节技术,能够精准控制转速,具有准确的调节精度和可靠可控的性能。这使得在需要高精度运动控制的场合,如机器

智能自动化系统,伺服电机助力生产升级


智能自动化系统,伺服电机助力生产升级你是否曾想过,未来的工厂会是怎样的?是不是会有各种高科技设备,自动化系统为生产线带来更效率高率和更精准的操作?伺服自动化技术正是这样的未来之路的一部分。那么,什么是伺服自动化呢?伺服自动化是一种将自动化系统与伺服电机相结合的技术,通过精准的控制和反馈机制,实现生产过程的智能化、效率高化。伺服自动化系统可以广泛应用于各种行业,包括制造业、工业自动化、机械加工等领域,为企业的生产提供强大的支持和助力。在过去,传统的生产方式往往需要大量的人力和时间投入,生产效率有限,质量控制难度大。而伺服自动化技术的出现,彻底改变了这一现状。通过引入智能化的自动化系统和高精度的伺服电机,生产线可以实现更快速、更精准的生产过程。比如,在汽车制造业中,伺服自动化系统可以帮助生产线实现无人操作,减少人为错误和生产过程中的浪费,提高生产效率,降低成本。伺服自动化技术的应用还可以为企业

创新科技,打造智能效率高电机


**创新科技,打造智能效率高电机**在当今科技飞速发展的时代,伺服自动化技术正逐渐成为制造业中的一颗璀璨明珠。伺服自动化技术不仅可以提高电机的智能化程度,还能显著提升电机的效率和性能。今天,我们就来探讨一下如何利用创新科技,打造智能效率高的电机,让您的生产线更加顺畅效率高。首先,让我们来了解一下什么是伺服自动化技术。伺服自动化技术是一种通过控制系统实现精确位置控制的技术,它可以根据预设的轨迹和速度要求,精准地控制电机的运动。这种技术不仅可以提高生产效率,还能够减少能源消耗,降低生产成本。伺服自动化技术的应用范围非常广泛,从汽车制造到电子产品生产,几乎所有领域都可以受益于这一技术。通过使用伺服自动化技术,制造商可以更加灵活地调整生产线,提高产品质量和产量,同时也可以降低生产过程中的人为错误。在伺服自动化技术中,关键的一环是伺服电机。伺服电机是一种可以根据控制信号精确控制转速和位置的电机,其精

解读伺服自动化,智能驱动未来


伺服自动化,作为智能驱动未来的关键技术,正逐渐改变着我们的生活和工作方式。从工业生产到智能家居,伺服自动化的应用无处不在。这种先进技术的崛起,为我们带来了更高效、更精准的生产方式,同时也为未来的发展开辟了新的可能性。想象一下,当你的家用机器人能够根据你的指令准确地完成家务,当工厂的生产线能够实现零误差生产,当医疗设备能够精准定位治疗病灶,这一切都离不开伺服自动化技术的支持。伺服自动化不仅提高了生产效率,还提升了产品的质量和可靠性,为我们的日常生活带来了更多便利。伺服自动化的发展,也让我们看到了未来的智能世界。通过智能传感器和数据分析,伺服系统能够更好地理解人类需求,自动调节工作状态,实现智能化的生产和服务。这种智能化的趋势,不仅提升了生产效率,还为人们的生活带来了更多便利和舒适。总的来说,伺服自动化是智能驱动未来的重要技术之一,它不仅改变了我们的生产方式,也影响着我们的生活方式。随着技术的